

5-METHYL COUMARINS AND CHROMONES FROM *TRIPTILION* SPECIES

M. BITTNER, J. JAKUPOVIC, F. BOHLMANN, M. GRENZ and M. SILVA*

Institute of Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F.R.G.; *Universidad de Concepcion, Facultad, Cs. Biologica y Rec. Nat., Casilla 2407, Concepcion, Chile

(Received in revised form 19 February 1988)

Key Word Index-*Triptilion benaventei*, *T. spinosum*; Compositae; 5 methyl coumarins; 5-methyl chromones.

Abstract-The aerial parts of two *Triptilion* species afforded in addition to known compounds eight new 5-methyl coumarins and a related chromone. The structures were elucidated by high field NMR techniques. The chemotaxonomic relevance of these findings are discussed briefly.

INTRODUCTION

The genus *Triptilion* (Compositae, tribe *Mutisieae*) is concentrated in Central Chile and placed in a group which is characterized by few phyllaries and florets and a similar exine structure [1]. As nothing was known on the chemistry of this genus we have studied two species, *T. benaventei* Remy and *T. spinosum* R. et P. var. *spinosum*. The results are presented in this paper.

RESULTS AND DISCUSSION

The aerial parts of *Triptilion benaventei* afforded the 5-methyl coumarin derivatives **1**, **2a/b**, **4** and **5a/b**. The structure of compound **1** followed from the ^1H NMR spectrum (Table 1) which was in part close to those of several 5-methyl coumarins isolated from *Ethulia cyanoides* [2-6] where, however, different side chains at C-5' are present. The nature of the side chain of **1** clearly followed from the corresponding ^1H NMR signals. The configuration of the $\Delta^{6'}$ bond was determined by a NOE between H-6' and H-8'. We have named this compound triptiliocoumarin.

The spectra of the epimers **2a/b**, which could not be separated, followed also from the ^1H NMR spectral data (Table 1) and from that of the anhydro derivative **3**. The latter was obtained as the only product on treatment of the epimers **2a/b** with acetic anhydride. The configuration of the $\Delta^{6'}$ bond again was determined by NOE. The stereochemistry at C-5' of the epimers **2a/b** followed from comparison of the chemical shifts of H-2' with those of related compounds from an *Ethulia* species [1]. Furthermore, if a $5\alpha'$ -hydroxy is present a *W*-coupling with H-4 β' can be observed while in the case of a $5\beta'$ -hydroxy derivative [1] a *W*-coupling between the 3'-methyl group and H-4 α' is present.

As already followed from the molecular formula ($\text{C}_{25}\text{H}_{30}\text{O}_5$) the coumarin **4** had one oxygen more than **2a/b**. As one olefinic methyl signal was replaced by a sharp singlet, and furthermore a sharp singlet at δ 3.13 was present, an 6', 7'-epoxide of **2b** was very likely. This was further supported by a *W*-coupling between H-4' and the hydroxy proton which required an axial orientation of the hydroxy group which is hydrogen bonded with the

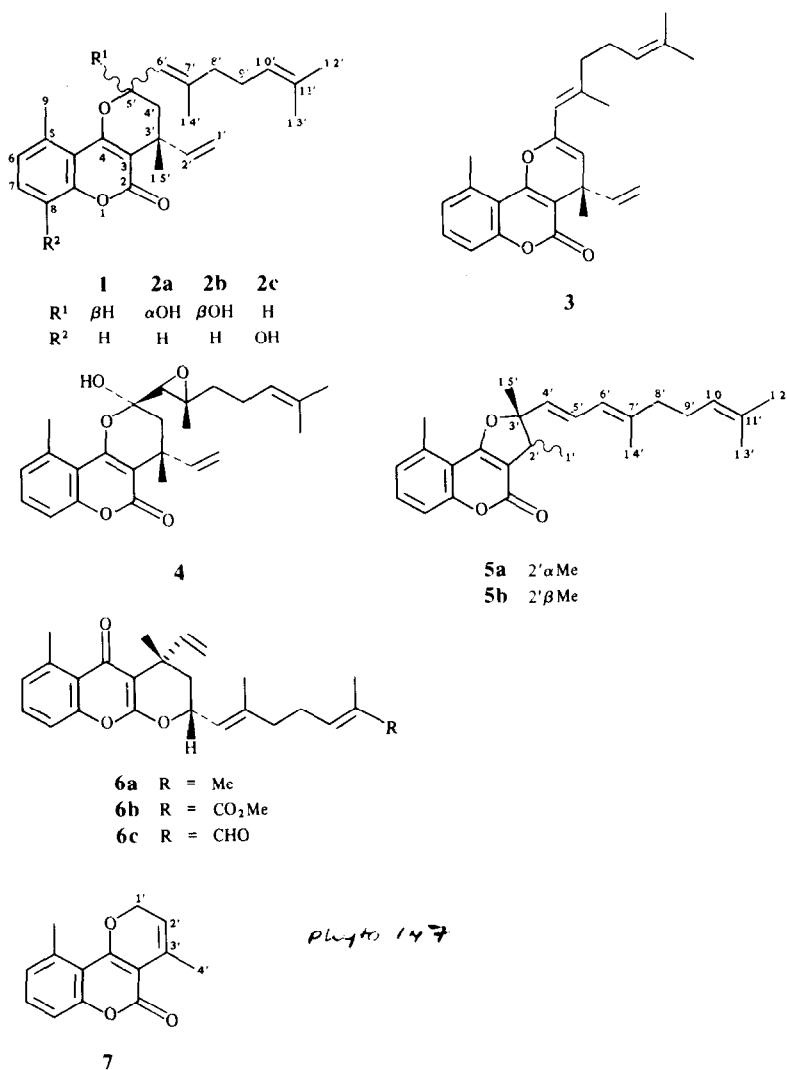
epoxide oxygen leading to a very sharp doublet for the hydroxyl proton. The relative configuration at C-3' and C-5' again was deduced from the corresponding chemical shifts of the neighbouring protons.

The structures of the epimers **5a** and **5b** followed from the ^1H NMR spectra (Table 1) which were in part similar to that of cyclobrachycoumarin from a *Mutisia* species [7] where a geranyl moiety is linked with the coumarin in the same way. The relative configuration at C-2' and C-3' in the case of **5b** was determined by a NOE between H-1' and H-15' (7%). Accordingly, **5a** was isotriptiliocoumarin and **5b** 2'-epiisotriptiliocoumarin.

The extract of the aerial parts of *Triptilion spinosum* gave umbelliferone, the chromones **6a** (nassauvia chromone) [8], **6b** [8] and **6c** as well as the 5-methyl coumarins **2c** and **7**.

The ^1H NMR spectrum of compound **2c** was in part very close to that of **1**. However, the aromatic protons led to a pair of doublets at δ 7.09 and 7.05 indicating an additional oxygen function at C-8. As already followed from the mass spectrum this could only be a hydroxy group, accordingly in the NMR a broadened singlet at δ 4.96 was observed.

The structure of **6c** could be established by comparing the ^1H NMR spectrum (Table 1) with that of **6b** [8]. The replacement of the carbomethoxy by an aldehyde group followed from the absence of a methoxy signal while a singlet at δ 9.41 required an aldehyde proton its chemical shift indicated the E-configuration of the $\Delta^{10'}$ bond. As the signals of H-1'-H-5' and H-15' were nearly identical with those of **6a** and **6b**, where the configuration at C-3' and C-5' was established, identical stereochemistry also for **6c** was likely. The absolute configuration of all compounds could not be determined.


The molecular formula of **7** ($\text{C}_{14}\text{H}_{12}\text{O}_3$), which we have named triptispinocoumarin, already indicated that a degraded compound was present. The ^1H NMR spectrum (see Experimental) showed that in this case the 4-hydroxy-5-methyl coumarin was condensed with a C_4 -unit.

The chemistry of the genus *Triptilion* again shows that the rare 5-methyl coumarins and chromones are characteristic of groups in the tribe *Mutisieae*. As the chromones **6a** and **6b** has been isolated from *Nassauvia* [8] the

Table 1. ^1H NMR spectral data of compounds **1**, **2a**–**2c**, **3**, **4**, **5a**, **5b** and **6c** (400 MHz, CDCl_3 ; δ -values)

H	1	2a	2b	2c	3	4	5a	5b	6c
6	6.99 <i>br d</i>	7.01 <i>br d</i>	7.00 <i>br d</i>	7.09 <i>br d</i>	7.02 <i>br d</i>	7.02 <i>br d</i>	7.02 <i>br d</i>	7.02 <i>br d</i>	7.05 <i>br d</i>
7	7.30 <i>t</i>	7.35 <i>t</i>	7.33 <i>t</i>	7.05 <i>d</i>	7.33 <i>t</i>	7.34 <i>t</i>	7.38 <i>t</i>	7.37 <i>t</i>	7.38 <i>t</i>
8	7.12 <i>br d</i>	7.16 <i>br d</i>	7.15 <i>br d</i>	—	7.14 <i>br d</i>	7.15 <i>br d</i>	7.21 <i>br d</i>	7.19 <i>br d</i>	7.16 <i>br d</i>
9	2.64 <i>br s</i>	2.72 <i>br s</i>	2.75 <i>br s</i>	2.77 <i>s</i>	2.71 <i>br s</i>	2.73 <i>br s</i>	2.71 <i>br s</i>	2.69 <i>br s</i>	2.83 <i>br s</i>
1'	5.14 <i>d</i> (<i>t</i>)	5.24 <i>d</i> (<i>t</i>)	5.08 <i>d</i> (<i>t</i>)	5.13 <i>dd</i> (<i>t</i>)	5.10 <i>dd</i> (<i>t</i>)	5.17 <i>dd</i> (<i>t</i>)	5.11 <i>d</i>	1.33 <i>d</i>	5.13 <i>d</i>
1'	5.11 <i>d</i> (<i>c</i>)	5.27 <i>d</i> (<i>c</i>)	5.07 <i>d</i> (<i>c</i>)	5.09 <i>dd</i> (<i>c</i>)	5.21 <i>dd</i> (<i>c</i>)	5.11 <i>d</i> (<i>c</i>)	5.09 <i>d</i>	5.09 <i>d</i>	5.09 <i>d</i>
2'	6.17 <i>dd</i>	6.23 <i>dd</i>	6.32 <i>dd</i>	6.16 <i>dd</i>	6.49 <i>dd</i>	6.31 <i>dd</i>	3.21 <i>q</i>	3.37 <i>q</i>	6.16 <i>dd</i>
3'	1.95 <i>dd</i>	2.42 <i>d</i>	—	1.95 <i>dd</i>	—	2.11 <i>d</i>	—	—	1.96 <i>dd</i>
4'	1.75 <i>dd</i>	2.05 <i>d</i>	—	1.64 <i>dd</i>	—	2.04 <i>dd</i>	5.70 <i>d</i>	5.75 <i>d</i>	1.65 <i>dd</i>
5'	4.93 <i>ddd</i>	—	—	5.09 <i>ddd</i>	—	—	6.58 <i>dd</i>	6.49 <i>dd</i>	5.09 <i>ddd</i>
6'	5.39 <i>br d</i>	5.51 <i>br s</i>	5.61 <i>br s</i>	5.34 <i>br d</i>	5.67 <i>br s</i>	3.13 <i>s</i>	5.91 <i>br d</i>	5.83 <i>br d</i>	5.41 <i>br d</i>
8'	—	2.13 <i>m</i>	—	2.10 <i>m</i>	2.17 <i>br s</i>	—	—	—	2.54 <i>br q</i>
9'	—	2.14 <i>m</i>	—	—	—	—	—	—	2.07 <i>m</i>
10'	5.10 <i>br t</i>	5.10 <i>br t</i>	5.08 <i>br t</i>	5.09 <i>br t</i>	5.11 <i>br t</i>	5.09 <i>br t</i>	5.10 <i>br t</i>	5.08 <i>br t</i>	2.29 <i>br t</i>
12'	1.70 <i>br s</i>	1.68 <i>br s</i>	1.67 <i>br s</i>	1.70 <i>br s</i>	1.70 <i>br s</i>	1.70 <i>br s</i>	1.68 <i>br s</i>	1.67 <i>br s</i>	6.48 <i>br t</i>
13'	1.63 <i>br s</i>	1.62 <i>br s</i>	—	1.57 <i>br s</i>	1.62 <i>br s</i>	1.63 <i>br s</i>	1.60 <i>br s</i>	1.59 <i>br s</i>	9.41 <i>s</i>
14'	1.76 <i>d</i>	1.89 <i>br s</i>	1.90 <i>br s</i>	1.77 <i>d</i>	1.90 <i>d</i>	1.46 <i>s</i>	1.78 <i>br s</i>	1.74 <i>br s</i>	1.77 <i>br s</i>
15'	1.60 <i>s</i>	1.57 <i>s</i>	1.77 <i>s</i>	1.62 <i>s</i>	1.64 <i>s</i>	1.62 <i>s</i>	1.59 <i>s</i>	1.59 <i>s</i>	1.61 <i>s</i>

J [Hz]: 6, 7 = 7, 8 = 8; 6', 14' = 1; compounds **1**, **2a**–**2c**: 1c', 2' = 10.5; 1t', 2' = 17; 9', 10' = 7; compounds **1** and **2c**; 4', 5' = 12; 4₂', 5' = 2; 5', 6' = 8; compounds **2a**, **b** and **4**; 4₁', 4₂' = 14.5; compound **4**; 4₂', OH = 1.5; compounds **5a**/**b**: 1, 2' = 9, 10' = 7; 4', 5' = 15; 5, 6' = 11; compound **6c**: 4₁', 4₂' = 14; 4, 5' = 12; 4₂', 5' = 2; 5, 6' = 8; 8, 9', 10' = 7.

placement of *Triptilion* together with the latter in a closely related group [1] would be supported by the chemistry while that of *Moscharia* and *Polyachyrus*, both also placed in this group [1], differs completely, the former having isocedrenes [9] and the latter highly oxygenated eudesmanes [10]. Further investigations, both of the morphology and the chemistry, are therefore desirable.

EXPERIMENTAL

Air-dried plant material of *T. benaventei* (137 g, collected in January 1986, Parque Nacional, Nahuelbuta, Chile, voucher P. Pacheco 1844) was extracted and worked-up as reported previously [11]. The CC fractions obtained with Et_2O -petrol (1:1), were further sepd by TLC (silica gel, Et_2O -petrol (1:1) and by HPLC (RP 8, $MeOH$ - H_2O (17:3), *ca* 100 bar). Finally 3 mg **1** (R_f 13.1 min), 9 mg **2a/b** (R_f 14.6 min and TLC Et_2O -petrol (1:3), three developments, R_f 0.66), 2 mg **4** (R_f 11.9 min), 5 mg **5a** (R_f 14.6 min and TLC Et_2O -petrol (1:3), three developments, R_f 0.70) and 2 mg **5b** (R_f 14.6 min and TLC Et_2O -petrol (1:3), three developments, R_f 0.80) were obtained.

The extract of the aerial parts of *T. spinosum* (135 g, collected in January 1987, Parque Hualpen, Chile, voucher Z. Rozas 2172) gave by CC three fractions [1: Et_2O -petrol (1:3); 2: Et_2O -petrol (3:1) and 3: Et_2O and Et_2O - $MeOH$ (9:1)]. Repeated TLC of fraction 1 [Et_2O -petrol (1:6, several developments) gave 7 mg **6a** and 2 mg **7** (R_f 0.45). TLC of fraction 2 [Et_2O -petrol (1:3)] gave 10 mg **6b**, 8 mg **6c** (R_f 0.38) and 3 mg **2c** (R_f 0.35). TLC of fraction 3 afforded 10 mg umbelliferone. Known compounds were identified by comparing the 400 MHz 1H NMR spectra with those of authentic materials.

Triptiliocoumarin (1). Colourless gum; IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 1705, 1602 (coumarin); MS m/z (rel. int.): 378.220 [M]⁺ (12) (calc. for $C_{25}H_{30}O_3$: 378.219), 228 [RDA]⁺ (69), 135 [$C_8H_7O_2$]⁺ (18), 69 [C_5H_9]⁺ (100); $[\alpha]^{24}_D$ -22 ($CHCl_3$; *c* 0.16).

5'-Hydroxytriptiliocoumarin (2a/b). Colourless gum, which could not be sepd by TLC or HPLC. IR $\nu_{max}^{CHCl_3}$ cm⁻¹ = 3460 (OH), 1710, 1610, 1600 (coumarin). Heating with Ac_2O /DMAP in $CHCl_3$ at 70° for 3 hr afforded 3, colourless gum; MS m/z (rel. int.): 376.204 [M]⁺ (22) (calc. for $C_{25}H_{28}O_3$: 376.204), 361 [$M - Me$]⁺ (100), 349 [$M - CH=CH_2$]⁺ (21), 307 [$M - C_5H_9$]⁺ (40), 173 (63), 69 (41).

8-Hydroxytriptiliocoumarin (2c). Colourless gum; $\nu_{max}^{CHCl_3}$ cm⁻¹: 3600 (OH), 1710 (coumarin); MS m/z (rel. int.): 394.214

$[\text{M}]^+$ (4) (calc. for $\text{C}_{25}\text{H}_{30}\text{O}_4$: 394.214), 325 $[\text{M} - \text{C}_5\text{H}_9]^+$ (8), 244 $[\text{M} - \text{C}_{11}\text{H}_{18}]^+$ (100), 69 $[\text{C}_5\text{H}_9]^+$ (36); $[\alpha]_D^{24} + 8$ (CHCl_3 ; c 0.18).

5 α '-Hydroxy-6',7'-epoxytriptiliocoumarin (4). Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 3520 (OH), 1710, 1610, 1600 (coumarin); MS m/z (rel. int.): 410.210 $[\text{M}]^+$ (3.5) (calc. for $\text{C}_{25}\text{H}_{30}\text{O}_5$: 410.210), 229 $[\text{M} - \text{C}_{11}\text{H}_{17}\text{O}_2]^+$ (66), 135 (86), 95 (54), 69 (100).

Isotriptiliocoumarin (5a). Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 1710, 1630, 1600 (coumarin); MS m/z (rel. int.): 378.219 $[\text{M}]^+$ (16) (calc. for $\text{C}_{25}\text{H}_{30}\text{O}_3$: 378.219), 363 $[\text{M} - \text{Me}]^+$ (3), 309 $[\text{M} - \text{C}_5\text{H}_9]^+$ (20), 229 (22), 175 (21), 69 (100).

2'-Epiisotriptiliocoumarin (5b). Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 1710, 1620, 1600 (coumarin); MS m/z (rel. int.): 378.220 $[\text{M}]^+$ (38) (calc. for $\text{C}_{25}\text{H}_{30}\text{O}_3$: 378.219), 363 (6), 309 (34), 229 (42), 175 (38), 69 (100).

12'-Oxo-nassauvia chromone (6c). Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 1710 (CHO), 1650 (chromone); MS m/z (rel. int.): 228 $[\text{M} - \text{C}_{11}\text{H}_{18}]^+$ (100), 213 $[\text{228} - \text{Me}]^+$ (14), 69 (60); $[\alpha]_D^{24} - 1.5$ (CHCl_3 ; c 0.79).

Triptispinocoumarin (7). Colourless gum; IR $\nu_{\text{max}}^{\text{CHCl}_3} \text{cm}^{-1}$: 1710, 1600 (coumarin); MS m/z (rel. int.): 228.079 $[\text{M}]^+$ (90) (calc. for $\text{C}_{14}\text{H}_{12}\text{O}_3$: 228.079), 213 $[\text{M} - \text{Me}]^+$ (30), 189 (48), 135 (56), 69 (100); ^1H NMR (CDCl_3): δ 7.01 (br *d*, H-6), 7.35 (*t*, H-7), 7.14 (br *d*, H-8), 2.65 (br *s*, H-9), 4.83 (*dq*, H-1'), 5.41 (*tq*, H-2'), 2.23 (br *q*, H-4'); (*J* [Hz]: 6, 7 = 7, 8 = 8; 1', 2' = 4; 1', 4' = 1.5; 2', 4' = 1).

Acknowledgement—M. B. thanks the Alexander von Humboldt

Foundation for a fellowship, M. S. for support by Fondo Nacional de Ciencias and the VW-foundation.

REFERENCES

1. Cabrera, A. (1977) *The Biology and Chemistry of the Compositeae* (Heywood, V. H., Harborne, J. B. and Turner, B. L., eds), p. 1060. Academic Press, London.
2. Bohlmann, F. and Zdero, C. (1977) *Phytochemistry* **16**, 1092.
3. Balbaa, S. I., Bohlmann, F., Halim, A. F. and Halaweish, F. T. (1980) *Planta Med.* **39**, 218.
4. Balbaa, S. I., Halim, A. F., Halaweish, F. T. and Bohlmann, F. (1980) *Phytochemistry* **19**, 1519.
5. Bohlmann, F., Balbaa, S., Halim, A. F. and Halaweish, F. T. (1981) *Phytochemistry* **20**, 177.
6. Shukla, V. S., Dutta, S. C., Baruah, R. N., Sharma, R. P., Thyagarajan, G., Herz, W., Kumar, N., Watanabe, K. and Blounts, J. F. (1982) *Phytochemistry* **21**, 1725.
7. Zdero, C., Bohlmann, F., King, R. M. and Robinson, H. (1986) *Phytochemistry* **25**, 509.
8. Zdero, C., Bohlmann, F., King, R. M. and Robinson, H. (1986) *Phytochemistry* **25**, 2873.
9. Singh, P., Jakupovic, J. and Bohlmann, F. (1985) *Phytochemistry* **24**, 1525.
10. Zdero, C., Bohlmann, F. and Niemeyer, H. M. (1988) *Phytochemistry* **27**, 2165.
11. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) *Phytochemistry* **23**, 1979.